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ABSTRACT

A pseudo-Nambu-Goldstone boson, with a potential of the form V(¢) = A4l £+
cos(#/ f)], can naturally give rise to an epoch of inflation in the early universe. Successful
inflation can be achieved if f ~ my; and A ~ mgyr. Such mass scales arise in particle
physics models with a gauge group that becomes strongly interacting at the GUT scale,
e.g., a8 is expected to happen in the hidden sector of superstring theories. The density
fluctuation spectrum is & non-scale-invariant power law, with extra power on large scales.

In recent years, the inflationary universe has been in a state of theoretical limbo: it
is a beautiful idea in secarch of a compelling model. The idea is simple[1]: if the early
universe undergoes an epoch of exponential de Sitter expansion during which the scale
factor increases by a factor of at least €%, then a small causally connected region grows to
s sufficiently large size to explain the observed homogeneity and isotropy of the universe,
to dilute any overdensity of magnetic monopoles, and to flatten the spatial hypersurfaces,
1 = 8xGp/3H? — 1. As a bonus, quantum fluctuations during inflation can causally
generate the large-scale density fluctuations required for galaxy formation.

During the inflationary epoch, the energy density of the universe is dominated by the
(nearly constant) potential energy density V(¢) associated with a slowly rolling scalar
field ¢, the inflaton (2]. To satisfy microwave background anisotropy limits {3] on the
generation of density fluctuations, the potential of the inflaton must be very flat. Con-
sequently, ¢ must be extremely weakly self-coupled, with effective quartic self-coupling
constant Ay < 10712 — 10-14,

Thus, density fluctuations in inflation are a blessing to astronomers but a curse on
particle physicists: although a large number of inflation models have been proposed [4],
none of them is acsthetically compelling from a particle physics standpoint. In some
cases, the smallness of Ay is protected against radiative corrections by a symmeiry, e.g.,
supersymmetry. However, the small coupling, while stable (technically natural), is itself
unexplained, and is postulated solely in order to generate successful inflation. In recent

* To appear in proceedings of the UCLA International Conference on
Trends in Astroparticle Physics, Santa Monica, Nov. 1990



years, it has become customary to decouple the inflaton completely from particle physics
models, to specify an ‘inflaton sector’ with the requisite properties, with little or no
regard for its physical origin. It would be preferable if the small coupling of tke inflaton
arose dynamically in particle physics models which are strongly natural, i.e., which have
no small numbers in the Lagrangian.

An example of the kind of thing we want, namely, a scalar field with naturally small
self-coupling, is provided by the axion [5]. In axion models, a global U(1) symmetry
is spontaneously broken at some large mass scale f, through the vacuum expectation
value of a complex scalar field, () = f exp(ia/f). (In this case, & has the familiar
Mexican-hat potential, and the vacuum is a circle of radius f.} At energies below the
scale f, the only relevant degree of freedom is the massless axion field a, the angular
Nambu-Goldstone mode around the bottom of the & potential. However, at a much
lower scale, the symmetry is explicitly broken by loop corrections. For example, the QCD
axion obtains a mass from non-perturbative gluon configurations (instantons) through the
chiral anomaly. When QCD becomes strong at the scale Agcp ~ 100 MeV, instanton
effects give rise to a periodic potential of height ~ quo p for the axion. In ‘invisible’ axion
models [6] with canonical Peccei-Quinn scale fpg ~ 1012 GeV, the resulting axion self-
coupling is Aq ~ (AQen/frg)* ~ 10733, This simply reflects the hierarchy between the
QCD and Peccei-Quinn scales, which arises from the slow logarithmic ruaning of agcgp.
Since the global symmetry is restored as A — 0, the flatness of the axion potentia.l%s
natural.

Pseudo-Nambu-Goldstone bosons (PNGBs) like the axion are ubiquitous in particle
physics models: they arise whenever a global symmetry is spontaneously broken. We
therefore choose them as our candidate for the inflaton: we assume a global symmetry
is spontaneously broken at a scale f, with soft explicit symmetry breaking at a lower
scale A; these two scales completely characterize the model and will be specified by the
requirements of successful inflation. The resulting PNGB potential is generally of the
form

V(¢) = AY[1 + cos(¢/f)]. (1)

so the potential, of height 2A4, has a unique minimum at ¢ = 7. As we will see below, for
f ~mp ~ 10" GeV and A ~ mgur ~ 10*® GeV, the PNGB field ¢ can drive inflation
[7]. (Note that in this case, the effective quartic coupling is Ay ~ (A/ )t~ 10713 a5
required.) These mass scales arise naturally in particle physics models. For example,
in the hidden sector of superstring theories, if a non-Abelian subgroup of E; remains
unbroken, the running gauge coupling can become strong at the GUT scale; indeed, it is
hoped that the resulting gaugino condensation may play a role in breaking supersymmetry
[8]. In this case, the role of the PNGB inflaton could be played by the “model-independent
axion” [9].

For temperatures T' < f, the global symmetry is spontaneously broken. Since ¢
thermally decouples at a temperature T' ~ f32 /mpt ~ f, we assume it is initially laid
down at random between 0 and 27 f in different causally connected regions. Within each
Hubble volume, the evolution of the field is described by

¢+3H$+Td+V'(¢) =0, (2)
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where T' is the decay width of the inflaton. In the temperature range A < T X f,
the potential V(&) is dynamically irrelevant, because the forcing term V'(¢) is negligi-
ble compared to the Hubble-damping term. (In addition, for axion models, A — 0 as

T/A = oo due to the high-temperature suppression of instantons.) Thus, in this tem-
perature range, aside from the smoothing of spatial gradients in ¢, the field does not
evolve. Finally, for T' < A, in regions of the universe with ¢ initially near the top of the
potential, the field starts to roll slowly down the hill toward the minimum. In those re-
gions, the energy density of the universe is quickly dominated by the vacuum contribution
(V(¢) ~ 2A* 2 praa ~ T*), and the universe expands exponentially. Since the initial
conditions for ¢ are random, our model is closest in spirit to the chaotic inflationary
scenario [10].

To successfully solve the cosmological puzzles of the standard cosmology, an infla-
tionary model must satisfy a variety of constraints.

1) Slow-Rolling Regime. The field is said to be slowly rolling (SR) when its motion
is overdamped, i.e., ¢ << 3H ¢, and two conditions are met:
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From Eqns. (3) and (4) the existence of a broad SR regime requires f > m,/v/487
(required below for other reasons). The SR regime ends when ¢ reaches a value ¢3, at
which one of the inequalities (3) or (4) is violated. For example, for f = myy, ¢a/f = 2.98
(near the potential minimum), while for f = my/v/24r, ¢2/f = 1.9. As f grows, ¢a/f
approaches . (Here and below, we assume inflation begins at a field value 0 < ¢,/f < =;
since the potential is symmetric about its minimum, we can just as easily consider the
case 1 < ¢1/f < 2x.)

2) Sufficient inflation. We demand that the scale factor of the universe inflates by
at least 60 e-foldings during the SR regime,
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Using Eqns. (3) and (4) to determine ¢; as a function of f, the constraint (5) determines
the maximum value ($7*2%) of ¢, consistent with sufficient inflation. The fraction of the
universe with ¢; € [0, ¢7***] will inflate sufficiently. If we assume that ¢, is randomly
distributed between 0 and 7 f from one horizon volume to another, the probability of
being in such a region is P = ¢7*** /7 f. For example, for f = 3my, mp, mpyz, and
mypi/v24x, the probability P = 0.7, 0.2, 3 x 1073, and 3 x 10~%!, The fraction of the
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universe that inflates sufficiently drops precipitousiy with decreasing f, but is large for f
near m;. This is shown in Fig. 1, which displays log(¢***/f) = 0.5 + logP and &,/ f.
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3) Density Fluctuations. Inflationary models generate density fluctuations [11] with
amplitude at horizon crossing dp/p = 0.1H2/$, where the right hand side is evaluated
when the fluctuation crossed outside the horizon during inflation. Fluctuations on ob-
servable scales are produced 60 - 50 e-foldings before the end of inflation. The largest
amplitude perturbations are produced 80 e-foldings before the end of inflation,

Sp . 0.3A%f (aw)”’ (1 + cos(gPe=/ )P/

> = Tmy \3 smepe/f)
Constraints on the anisotropy of the microwave background [3] require §p/p < 5 x 1078,
e, A <2x101GeV for f = my and A £ 3 x 103 GeV for f = my,/2. This bound
on A as a function of f is also shown in the figure. Thus, to generate the fluctuations

responsible for large-scale structure, A should be comparable to the GUT scale, and the
inflaton mass my = A?/f ~ 101} — 102 GeV.

In this model, the fluctuations deviate from a scale-invariant specirum: the ampli-
tude at horigson-crossing grows with mass scale M as §p/p ~ Mmn/st=s® Thus, the
primordial power spectrum (at fixed time) is a power law, |§,|* ~ k™, with spectral index
n = 1—(m3;/8xf?). The extra power on large scales (compared to the scale-invariant
n=1 spcctmm) may have important implications for large-scale structure [12].

4) Reheating. At the end of the SR regime, the field ¢ oscillates about the min-
imum of the potential, and gives rise to particle and entropy production. The decay
of ¢ into fermions and gauge bosons reheais the universe to a temperature Try =
(45/4n3g.) /4 /Tmp, where g. is the number of relativistic degrees of freedom. On
dimensional grounds, the decay rate is ' = ¢g?my?/f? = ¢2A%/f5, where g is an effec-
tive coupling constant. (For example, in the original axion model [5,8], ¢ « aga for

(8)
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two-photon decay, and g? « (my/mg)? for decays to light fermions .) For f = my
and g, = 103, we find Ty = 10%g GeV, too low for conventional GUT baryogen-
esis, but high enough if baryogenesis takes place at the electroweak scale. Alterna-
tively, the baryon asymmetry can be produced directly during reheating through baryon-
violating decays of ¢ or its decay products. The resulting baryon-to-entropy ratio is
ng/s ~ eTrpy/my ~ egA/f ~ 107 4eg, where ¢ is the CP-violating parameter; provided
eg > 1078, the observed asymmetry can be generated.

In conclusion, a pseudo-Nambu-Goldstone boson, e.g., a heavy (non-QCD) axion,
with a potential that arises naturslly from particle physics models, can lead to successful
inflation if the global symmetry breaking scale f ~ m,; and A >~ mgur.
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